
EMBEDDED SYSTEMS form a market that is

already larger and growing more rapidly than

that of general-purpose computers. In fact, real-

time multimedia and signal processing embed-

ded applications currently account for over 90%

of all computer cycles.8 Our focus in this article

will be on an increasingly important set of

embedded applications, consisting of portable

systems in the areas of digital communications

and multimedia consumer electronics (e.g., cel-

lular phones, personal digital assistants, digital

video cameras, and multimedia terminals).

These complex systems rely on “power-hungry”

algorithms for high-bandwidth wireless commu-

nications, video compression and decompres-

sion, handwriting recognition, speech and image

processing, etc. The portability of these systems

makes energy consumption a particularly criti-

cal design concern as it reduces battery life.

Moreover, high power dissipation leads to more

expensive packaging and decreases reliability.

At the same time, levels of microelectronic inte-

gration continue to rise, enabling more integrat-

ed functionality on a single chip. Such integra-

tion has significant advantages from the point of

view of performance, energy consumption, and

reliability, but poses a basic challenge: how to

effectively design “first-time-right” complex sys-

tems-on-a-chip that meet multiple stringent

design constraints.

In order to successfully design complex sys-

tems within the short time-to-market windows

characteristic of the embedded systems indus-

try, it is important to maximize the flexibility or

programmability of the target system architec-

ture. In other words, it is desirable to move as

much functionality as possible to embedded

software. This minimizes or eliminates the need

for application-specific hardware accelerators,

which due to their lack of flexibility may com-

promise time-to-market. In particular, since the

specification of such products frequently

evolves over time, a programmable system

architecture diminishes the impact of such

changes on the design. Moreover, feature dif-

ferentiation (within families of products) can

be done in software, which greatly decreases

development time and cost.

Unfortunately, the use of off-the-shelf embed-

ded processor cores is often not viable for our

applications, because general-purpose embed-

ded processors (even top-of-the-line reduced-

instruction-set computers and/or DSP cores)

may not be able to deliver the performance

required by the application and because they

may be prohibitively expensive or inefficient,

Design Challenges for New
Application-Specific
Processors_

New Application-Specific Processors

40

This article discusses challenges in developing

retargetable compilers and synthesis tools for

application-specific processor cores targeted at

embedded portable digital communications and

multimedia systems.

Margarida F. Jacome

Gustavo de Veciana
University of Texas at Austin

0740-7475/00/$10.00 © 2000 IEEE IEEE Design & Test of Computers

particularly with respect to energy consump-

tion. Thus, the embedded systems industry has

shown an increasing interest in Application-

Specific Instruction-Set Processors (ASIPs), i.e.,

processors tailored or specialized to the needs

of a specific product or family of products. By

spending silicon where it truly matters, these

processors are smaller and simpler than their

general-purpose counterparts, are able to run

at higher clock frequencies, and are more ener-

gy efficient.

The target applications in this article—digi-

tal communications and multimedia consumer

electronics—often spend most of their cycles

executing a few time-critical code segments with

well-defined characteristics, making them

amenable to processor specialization.

Moreover, these computation-intensive com-

ponents often exhibit a high degree of inherent

parallelism, i.e., computations that can be exe-

cuted concurrently. Very Large Instruction

Word (VLIW) ASIPs are particularly effective in

exploiting such fine-grained instruction-level

parallelism. (See, e.g., http://www-us2.semi-

conductors.philips.com/trimedia/.) These

processors (see Figure 1) comprise a large

number of functional units (such as multipliers

and arithmetic logic units) that can process

multiple operations and data transfers or

accesses simultaneously, thus enabling them to

achieve performance commensurate with that

of dedicated hardware accelerators.4

Consider the block diagram of a hypotheti-

cal programmable system architecture for a

multimedia application shown in Figure 1. The

VLIW ASIP performs number-crunching func-

tions required by our hypothetical application,

including discrete cosine and inverse discrete

cosine transforms and motion estimation algo-

rithms. An off-the-shelf DSP is used for the less

computationally demanding modem and

sound codec functions the application

requires. A third programmable component, an

application-specific microcontroller, is used to

provide timely interleaving of memory and

master control functions. Examples of embed-

41April–June 2000

Register File 1 Register File 2 Register File 3

Crossbar / Bus

To memory system

I/O I/O I/O I/O I/O I/OI/O I/O I/O I/OI/O
ALU
A1

ALU
A5

ALU
A3

ALU
A2

ALU
A4

MULT
M1

MULT
M2

MULT
M5

MAC
MA1

MULT
M3

MULT
M4

Cluster 1 Cluster 2 Cluster 3

Glue logic

A/D and D/A

µ C (ASIP)

Functionality

DSP

System
architecture

DSP:
modem and
sound codec

VLIW ASIP:
DCT, IDCT
and motion
estimation

Microcontroller
ASIP (µ C):
memory and

master controller

VLIW
processor

(ASIP)

On-chip
memory

Internal storage
and interconnect
structure

Figure 1. Block diagram of a multimedia system architecture containing a VLIW ASIP with

a clustered datapath.

ded systems such as this one—wherein three or

even more processor cores are instantiated

(two ASIPs and one off-the-shelf DSP)—are not

unusual in practice. However, current industry

efforts to develop such system architectures,

and the corresponding specialized processors,

require excessive manpower and resources,

resulting in unnecessarily high costs that only

a few can afford.

In this article, we focus on VLIW ASIPs spe-

cialized to support the time-critical, processing-

intensive components of our target embedded

applications. Although these processors are

potentially attractive to implement these system

components, their promise can be fully realized

only if methodologies and tools for the synthe-

sis of specialized processors and associated

high-quality retargetable compilers are devel-

oped. We argue here for the need to recognize

the complementarity between processor design

or specialization and retargetable compilation.

(In simple terms, a compiler is said to be retar-

getable if it can generate “efficient” assembly

code for various target processors. We discuss

this in more detail below.) Indeed, observe that

when considering processor specialization for

a group of functions or algorithms, the benefits

of a datapath structure and memory organiza-

tion can be achieved only with an effective

compiler. In turn, the effectiveness of a com-

piler depends on its ability to properly exploit

the specialized features that make the proces-

sor suitable to the application at hand.

We will use this complementarity as a spring-

board to discuss the challenges associated with

processor specialization. For concreteness, we

discuss possible solutions based on our ongo-

ing work (For information on the NOVA project, see

http://horizon.ece.utexas.edu/~jacome/nova.)

on a novel methodology that jointly addresses:

the synthesis of specialized VLIW ASIPs and

associated memory systems and the develop-

ment of high-quality retargetable compilers for

such specialized processors. As will be seen,

the promise of this joint approach lies in

enabling a systematic and aggressive reuse-

based, compiler-assisted optimization of a

processor’s complex cost/efficiency trade-offs.

As such, this is not a tutorial article, but rather

presents our view of the various challenges

lying ahead, based on past and ongoing work

in this growing research area.

VLIW ASIPs: design space
exploration supported by
retargetable code generation

The datapath of a VLIW machine is an inter-

connection of multiple, horizontally microc-

oded, possibly pipelined functional units (e.g.,

multipliers, arithmetic logic units, and multiply-

accumulate units) that are centrally controlled.

Specifically, each functional unit has dedicat-

ed, fixed control fields in a “very long” machine

instruction that can be independently set. VLIW

machines are microcoded in that these long

instructions execute in one cycle (i.e., every

instruction word specifies all datapath and

memory actions to be executed during that

cycle). Thus, setting up and maintaining the

instruction pipeline is the responsibility of the

programmer or code generator; accordingly,

the resulting pipeline schedule is fully visible in

the machine code. A centralized controller

issues a sequence of very long instructions dur-

ing program execution.

VLIW machines can be seen as a hybrid

between standard Single-Instruction, Multiple-

Data (SIMD) and Multiple-Instruction, Multiple-

Data (MIMD) parallel architectures. Indeed, a

SIMD processor can be viewed as a collection

of processing elements marching in lockstep

under the orders of a centralized controller

with each performing identical operations on

different data elements. By contrast, in a VLIW

architecture, heterogenous functional units can

each be performing different operations on var-

ious data elements. Thus, the flexibility of a

VLIW architecture is one step up from a

SIMD/vector processor. A MIMD machine, on

the other hand, has multiple, typically identical

processing elements, each with its own thread

of control. Thus, since a VLIW machine has

only one thread of control, it can be viewed as

a carefully “preplanned” MIMD machine with

heterogenous processing elements.

Below, we will discuss the specialization

“dimensions” that are worth pursuing for our

target applications and present a compiler-

assisted methodology for effectively exploring

the VLIW ASIP design space.

New Application-Specific Processors

42 IEEE Design & Test of Computers

Key specialization dimensions for VLIW
ASIPs

In tuning the microarchitecture of a VLIW

machine to an application’s time-critical func-

tions or components, three fundamental spe-

cialization dimensions must be considered:

■ the number and type of functional units that

should be instantiated in the machine’s data-

path

■ the organization of internal storage (register

files) and corresponding interconnect struc-

ture among such register files and to or from

the memory system

■ the organization of the memory system

Traditionally, datapaths have been based on

a single register file shared by all functional

units. This central register file provides internal

storage as well as switching (i.e., interconnec-

tion among the functional units and to or from

the memory system). Unfortunately, this simple

organization does not scale well with the large

number of functional units typical of a VLIW

machine. Indeed, it has been shown that for N

arithmetic units connected to a centralized reg-

ister file, the area of the register file grows as N3,

the delays as N3/2, and power requirements as

N3. See Rixner et al.8 In short, as the number of

functional units increases, internal storage and

communication between functional units

quickly become the dominant, if not the pro-

hibitive factor in terms of area, delay, and

power requirements. Thus, high-performance

VLSI computing systems have become limited

not by arithmetic capacity, but rather by com-

munication bandwidth.8 Indeed, as deep-sub-

micron microelectronic technologies evolve,

enabling very large numbers of functional units

to be placed on small, inexpensive chips, the

challenge is to devise microarchitectures capa-

ble of cost-effectively keeping these functional

units busy.

A fundamental observation is that the area,

delay, and power associated with the storage

organization can be dramatically reduced by

restricting the connectivity between functional

units and registers, so that each functional unit

can only read and write from or to a limited

subset of registers. Thus, a key dimension of

processor specialization to be explored is clus-

tering—i.e., the development of datapaths com-

prising clusters of functional units connected

to local storage (register files). A sketch of a

VLIW processor with three such clusters is

shown in Figure 1.

Although by moving from a centralized to a

distributed register file organization one can

reap significant delay, area, and power savings,

this type of specialization may come at a cost.

In particular, one may have to transfer data

among these register files (i.e., clusters), possi-

bly resulting in increased execution latency.

Our premise is that by carefully considering the

specifics of the target embedded application

and by using powerful optimizing compilers,

one can avoid these penalties and enjoy the

benefits.

The memory system organization is also a

major specialization dimension that should be

carefully considered when designing a VLIW

ASIP for the set of applications of interest. This

is so because the large amounts of data paral-

lelism typically exhibited by such applications

provide major opportunities for performance

enhancement. However, in order to effectively

explore such parallelism, one needs to be able

to stream data to the clusters or functional units

at a sufficiently high rate (i.e., high memory

bandwidth is required). The good news is that

the algorithms of interest typically perform well-

defined access patterns on simple, regular data

structures (i.e., vectors and matrices) whose

dimensions are known at compile time. This

strongly suggests that a distributed memory orga-

nization (comprised of a number of small, fast

memory banks) properly designed to exploit

locality or regularity in these data access pat-

terns can provide the required memory band-

width at a reduced cost (i.e., power or energy,

area, and delay). As in the previous case,

though, the timely design of such specialized

memory organizations (encompassing data

partitioning, memory allocation and assign-

ment, scheduling of data operations, loop trans-

formations, and other complex tasks) requires

the availability of effective memory synthesis

systems working in conjunction with powerful

optimizing compilers.

Finally, the interconnect structure (among

43April–June 2000

clusters and from clusters to memory) is a third

major specialization dimension that should be

explored. By choosing an appropriate inter-

connect structure (i.e., a bus or crossbar con-

figuration matching the parallelism and access

patterns in the algorithms of interest) and then

appropriately binding the algorithms’ opera-

tions to clusters, one can explore relevant

cost/performance trade-offs.

In summary, the key specialization dimen-

sions for the clustered VLIW machines we intro-

duced above are as follows. First, one needs to

define an effective organization for the memory

system. Then, one needs to determine the num-

ber of clusters to be instantiated in the datapath

and the interconnect structure among the clus-

ters and to or from the memory system.

Moreover, for each cluster, one needs to deter-

mine the number and type of functional units to

be locally instantiated, as well as the capacity of

the cluster’s local register file. Devising an “opti-

mal” datapath and memory system organization

for a given application (i.e., one that meets the

target performance while achieving low silicon

cost and high energy efficiency) is an exceed-

ingly complex, multiobjective optimization prob-

lem. In practice, this requires intensive design

space exploration with trade-offs involving phys-

New Application-Specific Processors

44 IEEE Design & Test of Computers

Retargetable compiler
Optimized assembly code

Application specification
time critical segments and requirements

(performance, energy/power, etc.)

VLIW ASIP design
(architectural level)

Alternatives
exploration

Alternatives selection

Solution evaluation

Specialized datapath
and memory system

Data partitioning and
binding/assignment

Operation/data
binding assignment

to clusters
Performance enhancing

code transformations
Bounds on execution

latency/energy/code size
Coarse scheduling and

data routing

Register allocation
and detailed scheduling

Library of parameterized
datapath/memory

components

Fast floorplanner

Area/delay/power
estimators

Datapath

Data memory

Program memory

Increased program
memory requirements?

Memory requirements ?

Increased data transfers ?

Cluster 2

Increase in required
internal storage?

Increased accesses/
spills to memory? Memory

system

Measures of compiler effectiveness:
code size, energy consumption,

and execution latency

Compiler issues for embedded VLIW ASIPs

Optimization

and code
generation
techniques

Sufficient memory
bandwidth?

Application level
performance

estimates

Physical
estimates

Register File 1

I/O I/O I/O
ALU
A2

I/O
ALU
A3

MULT
M4

MULT
M3

Cluster 1

Register File 1

I/O I/O I/O
ALU
A1

MULT
M1

MULT
M2

Figure 2. Research overview: VLIW ASIP design and retargetable compilers.

ical figures of merit (combinational delay, area,

power dissipation) as well as application-level

performance metrics (throughput or latency,

code size, energy consumption). In the next sub-

section, we discuss these challenges and pro-

pose a reuse-based, compiler-assisted design

space exploration methodology for specializing

a VLIW ASIP’s datapath and memory system to

a given class of applications.

Methodology
As shown in Figure 2, given a characterization

of the application of interest, our goal is to sup-

port both an iterative search (design space

exploration) for “optimal” specialized memory

organizations, datapaths, and interconnect struc-

tures (i.e., solutions that deliver the required per-

formance at low silicon cost and high energy

efficiency) and the generation of highly opti-

mized assembly code. The key elements of the

problem are as follows. To effectively explore

the huge space of specialized datapaths and

memory systems, one must have an infrastruc-

ture enabling a structured selection and evalua-

tion process. To evaluate candidate solutions,

one must have reliable estimates of the cost/effi-

ciency physical metrics of a datapath, memory

system, and interconnect configuration, as well

as associated application-level performance met-

rics. Since these estimates will drive the search,

they should be performed early (i.e., prior to the

detailed datapath and memory system design

and code-generation process).

To enable the selection of alternatives, we

propose to structure the solution space by using

a hierarchical parameterization of candidate

solutions. The idea is to build a library of funda-

mental components parameterized with respect

to relevant features (e.g., clusters parameterized

by the number of functional units and register

files) and memory banks parameterized by tech-

nology, speed, and access modes; size; and

ports. Such components can then be composed

on-the-fly to define the datapath, memory, and

interconnect alternatives. Note that such an

approach narrows the solution space along the

critical specialization dimensions discussed

above (i.e., supports the search for effective dis-

tributed organizations of computational

resources, such as clusters, and data storage

resources). Moreover, as shown on the right side

of Figure 2, the proposed parameterization of

components can facilitate early reliable estima-

tion of physical figures of merit, such as delay,

area, and power. Specifically, a “fast floorplan-

ner” together with a database of statistically char-

acterized clusters and memory banks can be

used to derive estimates with improved reliabil-

ity. This approach is a natural application of pre-

vious research on design reuse and early

estimation (see, e.g., Jacome and Peixoto6).

To evaluate the suitability of a specialized

memory organization and datapath to a target

application, one must estimate the execution

latency, code size, and energy consumption

that can be achieved for the application’s tar-

get code segments. As shown in Figure 2, the

tasks required to derive such application esti-

mates and the retargetable compilation prob-

lem are closely linked. The first such task is data

partitioning and allocation or binding to mem-

ory banks so as to maximize raw memory band-

width given the expected memory access

patterns. Then, one needs to determine a bind-

ing or assignment of an application’s opera-

tions to the datapath’s clusters that is likely to

reduce execution latency (i.e., what to execute

where). As mentioned earlier, for datapaths

with distributed register files, careful attention

should be paid to penalties incurred by bind-

ings that introduce data transfers among clus-

ters, as well as significant imbalances between

computation and memory operations. The

third task is to determine optimal behavior pre-

serving code transformations so as to enhance

performance (e.g., increase parallelism or con-

currency by pipelining loop iterations). Note

that such optimizations should take into

account both computation operations and the

required memory access operations so as to

properly balance the load on the datapath and

on the memory system over time. As we discuss

below, such transformations may significantly

increase program size, a major drawback for

memory-constrained embedded systems, as

well as internal data storage requirements (i.e.,

register pressure) and energy consumption and

thus must be carefully assessed for the class of

embedded components of interest.

Given a set of bindings or assignments and

45April–June 2000

parallelism-enhancing transformations, one

needs to quickly generate bounds (estimates)

for an application’s execution latency and other

application-specific metrics of interest. Such

bounds may be analytical (e.g., Jacome and de

Veciana4) and/or simulation-based, in which

case the proper level of abstraction for such

“fast” simulation must be devised (see

http://www.trimaran.org/docs.html). Note that

while the above tasks are required to select and

evaluate candidate memory organizations and

datapaths, they also represent the initial phases

of the retargetable compilation process—thus

our argument that the two problems are closely

linked. The final research challenge is to enable

the use of information generated at each itera-

tion of this process to guide or assist the design

space exploration process itself (i.e., help deter-

mine which alternative clustered datapath and

memory system configurations are most promis-

ing and thus should be considered next).

Retargetable compilation for VLIW
ASIP cores

Emerging retargetable compiler technology

for clustered VLIW ASIPs has two challenging

roles: as an essential component to assist the

synthesis of specialized processors and as a

means to produce high-quality embedded soft-

ware for clustered VLIW machines. In this sec-

tion, we argue that meeting these new

challenges may require fundamental changes

in the traditional compilation process and we

discuss some research directions.

Traditional compilers typically include three

main modules: a language-dependent front-

end, an intermediate optimization stage, and a

machine-dependent back-end.1 The front-end

module takes source code written in a high-

level programming language (such as C or C++)

and generates an internal or intermediate rep-

resentation of the behavioral description. The

intermediate optimization stage performs

“machine-independent” powerful perfor-

mance-enhancing transformations on this inter-

nal representation. Finally, the back-end

generates machine code for the target proces-

sor architecture. Thus, in a traditional compil-

er, the specifics of the target machine

(instruction set and structural details) are taken

into account only during the last (code-gener-

ation) stage of the compilation process.

The broad aim of traditional compilers is to

quickly produce fast code. Thus, the time com-

plexity of compilation algorithms is a major con-

cern. By contrast, when considering compilers

for embedded processors, the quality of the pro-

duced machine code is much more important

than the speed of the compilation process. Thus,

the use of more powerful optimization algo-

rithms, even if time-consuming, becomes neces-

sary and justifiable. Moreover, for the embedded

applications of interest, in addition to through-

put, the code size and energy consumption are

important for the generated code. Thus, the com-

pilation process for embedded applications has a

broader set of goals and constraints.

Most current compilers target a specific

processor architecture, which is, for the most

part, “hard-coded” in the code-generation mod-

ule. However, in order to enable design space

exploration for specialized VLIW machines, this

target specificity is inadequate. Indeed, as we

argued above, processor specialization can be

explored only via an “automatically” retar-

getable compiler. A compiler is said to be auto-

matically retargetable if the same compiler (i.e.,

same executable) can be used for a range (pos-

sibly limited) of target architectures. This is

achieved by providing the compiler with a

description of the target processor architecture

using a special-purpose language.7 (See, e.g.,

http://www.trimaran.org/docs.html.)

In summary, compiler technology for

embedded VLIW ASIPs requires both retar-

getability as well as the ability to deal with a larg-

er set of application-level performance issues.

Moreover, when compilers are used to drive a

datapath and a memory system synthesis or spe-

cialization process, they should encompass or

provide a broader set of tools to assist the vari-

ous phases of this process. Below, we discuss

the impact of these new requirements on the tra-

ditional compilation framework.

Code generation: background and
challenges posed by VLIW ASIPs
Traditional code g eneration. Traditional code

generation consists of three main phases:

instruction selection, register allocation and

New Application-Specific Processors

46 IEEE Design & Test of Computers

assignment, and scheduling and compaction.

During the instruction selection phase, an inter-

mediate representation of the source program

is mapped to “atomic” machine operations, or

“micro-operations,” each typically specifying

the transfer of a computed value to a register or

memory location. Next, during the register allo-

cation and assignment phase, program vari-

ables and intermediate results are mapped to

sets of machine registers and then to specific

physical registers. When scheduling is per-

formed, a partial order for the execution of the

previously obtained micro-operations is estab-

lished that maintains the semantics of the orig-

inal program. Finally, during compaction,

micro-operations are mapped to (i.e., com-

pacted into) actual machine instructions. Note

that compaction takes place only for machines

with some degree of parallelism (e.g., super-

scalar or VLIW processors).

These three phases are each exceedingly

complex as well as mutually dependent, so

addressing them sequentially can result in sub-

optimal code. This is known as the phase-cou-

pling problem.1 Although there is some

consensus on the adequacy of the above phas-

ing in the context of traditional compilers, the

problem is far from solved for clustered VLIW

ASIPs. Moreover, traditional algorithms or

approaches to address compilation steps may

not work well for such machines.

Code g eneration f or embed ded VLIW ASIPs.
A key aspect driving the need to reevaluate the

code-generation process for VLIW ASIPs is the

hierarchical organization of the datapath into

clusters (i.e., distributed “smaller datapaths”

with limited communication bandwidth).

Indeed, in this context, a particularly critical

subproblem is the binding or assignment of

operations to clusters, since it is crucial to effec-

tively exploit the fine-grain parallelism present

in the program. Although the cluster binding or

assignment phase can be viewed as an “abstract

form” of instruction selection, this critical step

is not present in traditional code generation.

The “quality” of a cluster binding or assignment

depends on achieving a good trade-off between

maximizing parallelism (i.e., allowing execution

of as many concurrent operations as possible,

even if that means “spreading” them across the

clusters) and minimizing data transfers across

clusters or to memory, since these may harm

latency and energy consumption. In order to

assess the quality of a binding, some (relaxed)

form of early scheduling or compaction and

data routing is required. Thus, there is a need to

revise the manner in which the coupling among

various compilation phases is handled in the

context of clustered machines.

The clustered nature of these machines also

impacts the effectiveness of traditional compi-

lation algorithms. For example, coloring-based

approaches have been successfully used for

register allocation or assignment.7,1

Unfortunately, such algorithms may perform

quite poorly in the context of distributed regis-

ter file organizations—in particular, when min-

imizing memory spills is important so as to

reduce energy consumption. Hence, there is

the need to develop approaches that consider

datapaths with several register files and effec-

tively route streams of data to or from and

across register files (clusters). In doing so, one

should attempt to minimize the need for spills

to memory (to reduce energy consumption) as

well as maximize the time windows for com-

pleting the required memory accesses (to avoid

congestion on the interconnection structure).

Along these lines, we propose2 a technique that

explores trade-offs between the size of poten-

tial prefetching windows and minimization of

spills, given a maximally concurrent schedule

of operations.

Taking a broader view of this problem, effec-

tive code generation for clustered machines

with distributed storage requires not only revis-

ing the problem decomposition and associat-

ed algorithms but also taking a fresh look at the

way dependencies among the resulting sub-

problems are handled. Specifically, the tradi-

tional sequential approach to code generation,

using “monolithic” algorithms, needs to be

replaced by a hierarchical, iterative compilation

process. In such an approach, early compila-

tion tasks (e.g., cluster binding or assignment)

might be based on an abstract, coarse view of

the datapath, permitting a rough assessment of

quality without completely carrying out sched-

uling, register assignment, and data routing.

47April–June 2000

The subsequent compilation tasks would use

increasingly precise models of the processor

(datapath, memory system, and interconnect

structure) to achieve high-quality code gener-

ation. Thus, a hierarchy is needed that enables

one to easily move from coarse- to fine-grain

models and back. Of particular importance is

the ability to back-annotate high-level models

with key information extracted from more-

detailed ones. This not only allows a more-

effective exploration of possible compiled code

but also is compatible with the need to support

the datapath and memory design process, as

we discussed above.

We propose4 and briefly illustrate below an

algorithm and model that exhibits some of

these desirable characteristics, while address-

ing the critical cluster binding or assignment

problem. Given a time-critical loop body seg-

ment for which code is to be generated, the

model and associated algorithm realize a care-

ful decomposition and relaxation of the global

scheduling problem, both in time (machine

cycles) and space (clusters and interconnec-

tion network). This decomposition, called a

window dependency graph, allows one to con-

trol complexity while reasoning about bind-

ings. In particular, it is useful to explore

trade-offs between achieving high instruction-

level parallelism (ILP) versus data transfer

penalties required to achieve such parallelism.

The key idea is to judiciously relax both capac-

ity and scheduling constraints so as to effi-

ciently reason early on about binding. Thus, for

example, one might initially assume unlimited

local storage capacity but retain a finite (aggre-

gated) capacity constraint for the interconnec-

tion network. This relaxed model for the

datapath allows one to bring in both schedul-

ing and a crude form of data routing, while han-

dling important cluster assignment decisions.

This model is currently being extended so as to

support other phases of the code-generation

process as well as data partitioning.

In addition to the code-generation issues dis-

cussed above, many of the so-called interme-

diate performance optimizations traditionally

performed in a machine-independent fashion

will have to be merged into the code-genera-

tion phase, at least during the generation of

final or optimized machine code. Next, we dis-

cuss the rationale and challenges in this

domain.

Performance-enhancing optimizations:
background and challenges posed by
VLIW ASIPS

As summarized in Figure 2, there are multiple

issues specific to compilation for embedded

clustered VLIW ASIPs that make the use of tradi-

tional machine-independent optimization tech-

niques problematic. In particular, embedded

applications may have stringent throughput as

well as program memory and/or energy con-

sumption constraints. When not used judicious-

ly, these techniques may result in prohibitive

increases in code size. Moreover, some such

transformations may increase memory access-

es, including spills due to insufficient local stor-

age, which in turn may reduce throughput

and/or increase energy consumption.

This suggests that during initial design space

exploration or compilation steps, it may make

sense to apply these techniques in a quasi-

machine-independent context in order to

quickly obtain upper bounds on achievable

throughput and general guidance on the

machine specializations that would be more

favorable. Then, as the specifics of the target

machine under construction are fleshed out,

they should be incorporated into these algo-

rithms, so as to provide more-precise trade-off

information (e.g., tighter bounds on the appli-

cation-specific metrics of interest). Eventually,

when the microarchitecture of the VLIW ASIP

is fully defined and the assembly code for the

target machine is to be generated by the com-

piler, such algorithms should be moved into the

first phases of the code-generation process and

include latency, code size, and energy con-

sumption constraints associated with the

embedded application or system.

We will illustrate the inadequacies of

machine-independent optimizations and draw-

backs of focusing solely on latency by dis-

cussing software pipelining, a technique that

has traditionally been used quite effectively to

increase ILP for time-critical loops.7 In software

pipelining, direct data dependencies between

operations are reduced (and thus ILP

New Application-Specific Processors

48 IEEE Design & Test of Computers

increased) by creating a modified loop body

that pipelines operations from several loop iter-

ations. Unfortunately, software pipelining may

result in significant increases in code size.

(Software pipelining requires an epilogue to fill

in the iterations pipe and a prologue to empty

the pipe.) Moreover, software pipelining usual-

ly increases internal storage requirements,7,5

thus when applied to clustered machines with

limited local storage, spills to memory and/or

data transfers may be introduced, which com-

promise the gains expected from increased ILP.

At the extreme, these additional spills and data

transfers can result in decreased throughput,

while unnecessarily increasing code size and

energy consumption.

An example of an algorithm that captures

machine specifics and incorporates constraints

beyond latency is the software pipelining algo-

rithm proposed in Jacome et al.5 This algorithm,

to be executed after cluster assignment, can

minimize latency under code size and resource

constraints and considers the effects on perfor-

mance of memory operations. We are current-

ly working on extensions that control the

increase in the lifetime of data objects, since

these can lead to costly spills to memory.

As alluded to previously, the applications of

interest typically also exhibit large amounts of

data parallelism, providing major opportunities

for performance enhancement. To exploit data

parallelism, one must adequately partition data

and assign them to memory banks in the dis-

tributed memory system and adequately sched-

ule the associated memory operations. This

permits one to cost-effectively maximize the

rate at which data can be streamed to the data-

path, while balancing computation and mem-

ory operations. Although some work has been

developed in the data-partitioning, assignment,

and scheduling areas (see, e.g., Catthoor et

al.3), robust optimization techniques to address

these problems in the context of a distributed

organization of computational resources (i.e.,

clusters) and data storage resources are still

lacking. Due to the first-order impact on per-

formance and power or energy consumption of

memory accesses for our class of applications,

the need for such techniques cannot be

overemphasized.

In this article, we have identified the main chal-

lenges posed by clustered VLIW ASIPs, have

discussed promising research directions, and

have briefly presented some of our work in this

area. We focused on clustered VLIW machines

for two reasons. First, they constitute an impor-

tant class of new machines that are particular-

ly effective in the context of increasingly

pervasive portable digital communications and

multimedia consumer electronics. Second,

they introduce a form of hierarchical aggrega-

tion that we believe not only is here to stay but

also will be increasingly critical, as microelec-

tronic technology enables increasing levels of

integration. With the possibility of placing a

very large number of processors on a single

(billion-transistor) chip on the near horizon, we

see a vast arena for research in application-spe-

cific, high-performance computing systems.

Specifically, the future challenges might lie in

the development of single-chip “special-pur-

pose” networks of loosely connected supern-

odes (i.e., clusters or aggregates of specialized

processors such as the VLIW ASIPs we dis-

cussed here), cooperating on a MIMD or quasi-

MIMD schema and supported by an effective

distributed main memory system that is partial-

ly or fully placed on a chip. Still, the starting

point is to develop a solid understanding on

how to control the complexity associated with

designing and compiling for a single such spe-

cialized processor.

Acknowledgments
This work is supported by a National Science

Foundation (NSF) Career Award MIP-9624231,

NSF Award CCR-9901255, and Grant 003658-0649-

1999 of the Texas Higher Education Coordinating

Board Advanced Technology Program.

References
1. A. Aho, R. Sethi, and J. Ullman, Compilers: Princi-

ples, Techniques and Tools. Reading, Mass.:

Addison-Wesley, 1988.

2. R. Anand, M.F. Jacome, and G. de Veciana,

“Heuristic Tradeoffs Between Latency and Energy

Consumption in Register Assignment,” IEEE/ACM

8th Int’l Workshop Hardware/Software Codesign,

May 2000.

3. F. Catthoor, S. Wuyack, E. Degreef, F. Balasa, L.

49April–June 2000

Nachtergaele, and A. Vandecappelle, Custom

Memory Management Methodology: Exploration

of Memory Organization for Embedded Multime-

dia System Design. Kluwer Academic Publishers,

1998.

4. M. Jacome and G. de Veciana, “Lower Bound on

Latency for VLIW ASIPs,” Proc. ACM/IEEE Int’l

Conf. Computer Aided Design (ICCAD), Nov.

1999.

5. M. Jacome, G. de Veciana, and C. Akturan,

“Resource Constrained Dataflow Retiming Heuris-

tics for VLIW ASIPs,” 7th Int’l Workshop

Hardware/Software Codesign, May 1999, pp.

12–16.

6. M. Jacome and H. Peixoto, “Design Reuse, How

Far from Delivering the Promise,” IEEE Design

and Test of Computers, to appear.

7. P. Marwedel and G. Goossens, eds, Code Gener-

ation for Embedded Processors. Kluwer Academ-

ic Publishers, 1995.

8. S. Rixner, W. Dally, B. Khailany, P. Mattson, U.

Kapasi, and J. Owens, “Register Organization for

Media Processing,” Proc. 26th Int’l Symp. High-

Performance Computer Architecture, May 1999.

Margarida F. Jacome is
an assistant professor in the
Department of Electrical and
Computer Engineering at the
University of Texas at Austin.
She received the BS and the

MS degrees from the Technical University of
Lisbon in 1981 and 1988, respectively, and the
PhD degree in electrical and computer engi-
neering from Carnegie Mellon University in 1993.
Her research focuses on CAD for hardware/soft-
ware codesign of embedded systems, applica-
tion-specific high-performance programmable
architectures, and retargetable compilers. In
1992, she was the recipient of the ACM/IEEE
Design Automation Conference Best Paper
Award. She is the recipient of a Halliburton
Foundation Award of Excellence and a 1996
National Science Foundation Career Award.

Gustavo de Veciana
received his BS, MS, and
PhD in electrical engineering
from the University of
California at Berkeley in
1987, 1990, and 1993,

respectively. In 1993, he joined the Department
of Electrical and Computer Engineering at the
University of Texas at Austin, where he is cur-
rently an associate professor. His research
focuses on issues in the design and control of
telecommunication networks and developing
algorithms for CAD. He is an editor for the
IEEE/ACM Transactions on Networking. He is the
recipient of a General Motors Foundation
Centennial Fellowship in Electrical Engineering
and a 1996 National Science Foundation Career
Award.

Direct comments and questions to Margarida
Jacome, Department of Electrical and Computer
Engineering, University of Texas, Austin, TX
78712; jacome@ece.utexas.edu.

New Application-Specific Processors

50 IEEE Design & Test of Computers

